
RD-Al21 282 SIMPLE METRICS FOR PROGRAMMING LRNGLIAGES(U) NAVAL i/i
POSTGRROLJATE SCHOOL MONTEREY CA B J MACLENNAN OCT 82
NPS52-82-eie

UNCLASSIFIED F/G 9/2 N

flfllflffl ND

W11 . 12 8 M
L36 12.2

1111111.8

'' U ~1.25111.4 1.

MICROCOPY RESOLUTION TEST CHART
NATiopAL GuREAu OF STANDARS - 099- A

NPS52-82-010

NAVAL POSTGRADUATE SCHOOL
Monterey, California

EA LEc-rE

~NOV 1298

A
SIMPLE METRICS FOR PROGRAMM4ING LANGUAGES

Bruce J. MacLennan

October 1982

Approved for public release; distribution unlimited

LAJ Prepared for:

I Chief of Naval Research
L4... Arlington, Virginia 22217

82 ~ 1205

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
- Superintendent Provost

The work reported herein was supported in part by the Office of Naval
Research under contract N00014-82-WR-20162, and in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by the
Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

A ssis ,

of Computer Science

Reviewed by: Released by:

IAZI7-
DAVID K. HSIAO, Chairman ILIAM M. TOLLES /
Department of Computer Science Dean of Research

°

.

*.........

UNCLASS IFI ED______
SECURITY CLASSIFICATION OF THIS PAGE ("omn Date Itntefed)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOR DOCUENTAION PGE 3FORE COMPLETING FORN
I. RPOR NUBER2. GOVT ACCESSION NO: 2. ECIPIENT.S CATALOG NUM92R

for ProraTL nLngae S. TYPE Off REPORT a PERIOD COVERED
simpe-QtP'C forProrammng angugesTechnical Report

6. PER9FORMING ORG. REPORT NUMISER

7. AUTWOR(a) 8. CONTRACT OR GRANT NUERe

Bruce J. MacLennan N00014-82 -WR-201 62 uE

9. PERFORING ORGANIZATION NAME ANO ADDRESS I0. PRGA LMN.PO ~,TAMK
NaalPstrdut SCho AREA GORK UIT NUMIS

Naval Postgraduate Shool
Monterey, CA 93940615N P0 -1-0

14. MONITORING AGENCY NAME 10-AOORESS'it ditlerant 1000 Conerelifdng Olftee) 15. SECURITY CLASS. (of this trpof)

Unclassified

too. Oack.ASSIPICATIONI DOWNGRADING

WS OISTNINUTION STATIEMENT .1 ala ago pt)I

Approved for public release; distribution unlimited

17. OISTRIGUTION STATEMENT (of te .aft entered In, Oleek 20. It different &sm Re~at)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Conlimu. an revinc oide It fteeesaav midnI&l1 br block rnheta)

programuing language metrics, software metrics, complexity measures, grammnar
size, language evaluation, empirical computer science, quantitative langauge
design.

2.ASgevr l oed *gTC~ e~1 hn ah aluation of progranmming lan-
* guages are introduced. The objective is to formalize notions such as 'size'

'complexity', 'orthogonality', and 'simplicity'. Three different kinds of me-
trics are described: syntactic, semantic, and transformational. The use of
these metrics is demonstrated using several complete languages and subsystems

* of several languages.

DOI JAN 73 1473 EDITION OFP NOV 65 IS OSSOL9TE UNCLASSIFIED
S. N 0102. I.,. 014. 6601 SECURITY CLASSIFICATION OF THIS PG unDeme~

SIMPLE METRI"'S FOR PROGRAI4ING LANGUAGES

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

Bruce J. MacLennan

Computer Science Department I',

Naval Postgraduate School i 1...... , es

Monterey, CA 93940

~\~Abstract: A .

Several metrics for guiding the design and evaluation of program-

ming languages are introduced. The objective is to formalize

notions such as 'size', 'complexity,, 'orthogonality', and 'sim-

plicity'. Three different kinds of metrics are described: syn-

tactic, semantic, and transformational.

Syntactic metrics are based on the size of a context-free

grammar for a language or a part of a language. They can be used

to judge the size of a language and the relative sizes of its

parts. These techniques are demonstrated by their application to

Pascal, Algol-60, and Ada.

Syntactic metrics make no reterence to the meaning ot a

language's constructs. For this purpose we have developed

several semantic metrics that measure the interdependencies among

the basic semantic ideas in a language. This technique has been

applied to the control, data, and name structures of FORTRAN,

BASIC, Lisp, Algol-60, and Pascal.

Finally, we suggest that a useful measure of a programming

language is the complexity of the relationship between its

-1-.

_ ' ' "": " ,.., '..,,,..... ,...,,.,.,,...,..,",,, .". "-" ".'.-. "-. . . . "'-. .. , " "-" " ".- -. • • .

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

syntactic and semantic structures. For this purpose we introduce

a transformational metric and demonstrate its use on subsystems

of several languages.

The paper concludes by discussing the general principles

underlying all of these metrics and by discussing the proper

method of validating metrics such as these.

1. Introduction

Since programming languages are the primary tools used in the

programming process, it is not surprising that the choice of pro-

gramming language is an important element of the life-cycle cost

of a software development project. Sometimes the design of a new

programming language seems the appropriate approach, as has been

the case with the Ada language for embedded computer applica-

tions. In either case, it is necessary to be able to compare

languages and judge their suitability for various applications.

Programming languages are frequently compared informally.

One language may be described as more "structured" than another,

or simpler, or more powerful, or better "human engineered", or

less procedural, or smaller, or more "orthogonal", and so forth.

These claims are particularly common in the descriptions of new

programming languages.

Unfortunately, there do not exist objective methods for

validating these claims. A claim that one language is preferable

to another may be supported by arguments, but these are

q

-2-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

frequently unconvincing. Also, these arguments fail to provide

any quancitative measure of now languages compare along these

axes. This eliminates any meaningful evaluation of the tradeoffs

among language design decisions. Thus, language comparison and

evaluation remains a mostly subjective art, not unlike literary

criticism (see, for example, (1]). This is unsatisfactory for a

tool of the importance of a programming language.

2. Related Work

The importance of language metrics makes the lack of research in

this area quite astonishing. Perhaps this can be attributed to

the relative youth of the craft of language design. Also, it may

in part result from some of the problems inherent in formulating

language metrics; a subject discussed later. In any case, there

are few reported attempts to place language comparison and

evaluation on an objective basis.

One such attempt was reported by Sammet [2] in 1971. This

approach might be described as "quantified subjectivity." There

are several steps: first, a list of language properties, such as

"English-like" and "high-level", is made. Each property is

assigned a weight depending on its relevance to an application

(or application class) as judged by the evaluator. In the second

stage the evaluator judges how well each language satisfies each

property and assigns a corresponding numeric score. A final

score for each language is computed by summing the weighted indi-

vidual scores. Sammet admits that this technique is subjective

_Z-3-

.* SIMPLE METRICS FOR PROGRAMMING LANGUAGES

but claims that it at least has the advantage of making the

evaluator's biases explicit.

Other attempts to measure languages can be found in the

psychological experiments of Gannon [3, 4] and others [5] which

compare specific language features (such as terminating versus

separating semicolons) with respect to properties such as reada-

bility and susceptibility to error. Although these studies are

valuable, their application will be limited unless psychological

properties can be related to more general language properties

(e.g., degree of structure).

How might we go about measuring objective language proper-

ties? What properties are amenable to such measurements? One

candidate is the size of a language. It is common to speak of

one language (say, PL/I) being larger than another (say, Pascal)

based on a subjective assessment of the number of features in

each language. The size of the reference manuals may even be

cited as evidence in such a judgement. A more promising approach

to comparing language sizes is to compare the size of their gram-

mars. Since a smaller, more regular language will tend to have a

shorter grammar than a larger, less regular language, we can

measure the size of a language by the size of its description in

a grammar in an appropriate normal form. The grammar itself can

be measured in a variety of ways (number of tokens, graph-

theoretic measures, etc.).

i4
.-Z,7

7 ~ j

- - i-' - - -7 - -

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

3. Method of Approach

In the section Introduction we Jescribed the use of zontext-free

grammars to measure syntactic complexity. This is based on the

idea that the difficulty in learning a language is a function of

the length of its grammar. The reason for this is that the pro-

grammer must, in essence, internalize these rules. Section 4

shows how this approach can be used to measure the total size of

a language's syntax, and how it can be used to compare the rela-

tive sizes of a language's parts.

There must be more to complexity than just grammar size,

*: however, since the shortest programming language grammar (for any

infinite language) is that whose statements are sequences of

identical tokens, e.g.

<program> ::: 1 I <program> 1

The reason that such a language is not simple is that the trans-

lation mapping programs to their meanings is very complicated.

We could say that the translation is not continuous (this is more

than a metaphor if these issues are placed in a lattice-theoretic

framework). To measure this complexity we use translation gram-

mars rather than simple generative grammars: the complexity of a

language is a function of the relation between its syntax and its

semantics. Measurement of this 1s accomplished by writing a

translation grammar that maps the language in question into an

abstract language that embodies its semantics. The size of this

translation grammar can then be meausred in a variety of ways.

-5- i

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

This transformational metric is demonstrated in Section 5.

The technique described above measures the transformational

complexity of a language, i.e., the complexity of the relation

between a language's syntax and semantics, but it does not

address the complexity of the underlying semantics. That is, a

language might have a simple grammar that is simply related to

its semantic constituents, but these semantic constituents might

themselves be complicated. (Of course, with a continuous trans-

lation, a complicated semantics will to some extent induce a com-

plicated syntax.) For instance, we can observe that the data

structuring methods of Pascal are more elaborate than those of

Algol-60. How can we measure this fact?

One technique comes from denotational semantics (see, for

example, [61, [71). By using these techniques one can formulate

a set of domain equations that describe, for instance, the data

types provided by a language. It is then often possible to rank

the complexity of the data structuring methods provided by

several languages by comparing the complexity of the associated

domain equations. To convert this into a quantitative measure it

is necessary to measure the complexity of these equations quanti-

tatively. This technique has already been used by the author to

compare FORTRAN, Algol-60, Pascal, and Ada on the basis of the

complexity of their data, control, and name structuring facill-

ties [8].

Some subsystems of a language, such as the control struc-

-6-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

tures, are not readily amenable to formulation as domain equa-

*- tions. Thus, a more generally applicable technique has been

developed. We can observe that all structures in programming

languages are produced by applying a set of constructors to a set

of primitives. The various ways in which these constructors can

be combined can be represented as grammar-like rules or as simple

graphs. More formally, sets of structures can be taken as

objects, and constructors as morphisms, in a category correspond-

ing to the structural system.

How does this permit comparison or evaluation of languages?

Intuitively, we might expect the complexity of a structural sys-

tem to be relpted to the number of dependencies between parts of

the system. These are represented by the number of morphisms, or

by the number of edges in the diagram representing the system.

Therefore, by ranking the complexity of the diagrams, we have an

ordinal measure for system complexity, and by counting the edges

in the diagram, we have a cardinal (quantitative) measure of com-

plexity. Of course there are many other measures that can be

applied to graphs, and several of these are investigated in Sec-

tion 6.

The important issue of the validation of programming

language metrics is discussed briefly in Section 7.

4. Syntactic Metrics

We define a context-free grammar G to be a quadruple,

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

G <T, N, P, g>

where T is a finite set of terminal symbols, N is a finite set of.*
non-terminal symbols, V = TUN is the vocabulary, P C NXV is a

finite set of productions, and gEN is the goal symbol. We use

lower-case letters for elements of the vocabulary and uppe--case

letters for sequences and sets.

For a string S in V1 , let ISI be the length of S. Then, we

define the size Iwl of a production w = <n,S> in P as InI+tSI

jS:+1. The size IGI of a context-free grammar G is defined

IG IN :S,:. IG= = I.= = p + S

SWP <n,S> 6 P

where p 1 P is the cardinality of P. This definition of size

is essentially the same as S(G) defined in [9] and [10]. We also

define R(G) = IG:-p to be the total size of the right-hand sides

of the productions.

The size of a context-free grammar is easy to determine from

its written form. For example, to determine the size of the

grammar with these productions:

- g h

g gh

h =i

h = sjgI

j ji

SIMPLE METRICS FOR PROGRAM4MING LANGUAGES

we simply count all the tokens except for the equal-signs. In

this case the size is 16.

Context-free grammars may be written in various kinds of

extended notations. For example, the BNF notation allows produc-

tions of the form

n SI S 2 + + Sk

as an abbreviation for the context-free productions

n - S

n =S

n = Sk

We define the size of the BNF production in terms of the size of

the corresponding context free productions, namely

kk + " Sil

Since there are k-1 plus-signs in the BNF production, the size of

BNF productions can also be determined by simply counting the

tokens they contain.

Another common notation for context-free grammars allows the

use of parenthesized lists of alternatives. A production of the

form

n R (S 1 + k) T

-9-"

SIMPLE METRICS FOR PROGRA4MING LANGUAGES

means the same as

n = RsT

S S1.+... +Sk

The size of the latter can be computed from the extended produc-

tion if each of the parentheses is counted as one token. Similar

conversions can be found for other notations for context-free

grammars.

Note that the number of productions in a BNF or extended BNF

grammar is just n, the number of non-terminals. We define the

right-hand size of a BNF or extended BNF grammar G to be R(G) -

:0:-n. Obviously, this is obtained by counting everything to the

right of the equal-signs.

In Table 1 we show the size of the context-free grammars for

BASIC, Pascal, Algol-60, and Ada. Since several of these

languages are expressed in extended-BNF notations, conversion

, factors like those described above have been used.

The size measure we have defined can also be applied to

parts of a language's grammar. This is useful for comparing the

relative size of a language's subsystems and for comparing the

amount of syntax used by different languages for corresponding

subsystems. Table 2 shows the size of the major subsystems of

Algol-60. Table 3 compares Algol-60, Pascal, and Ada on the

basis of the proportion of their syntax devoted to various pur-

poses. The greater proportion of Pascal devoted to declarations

- 10-

r , -.: , ... -..,. . . , .

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

is a result of its more elaborate type system; this trend has

continued in Ada.

5. Transformational Metrics

As discussed in Method of Approach, the goal of transformational

metrics is to measure the complexity of the relationship between

the syntax and semantics of a language. We do this by measuring

the size of a context-free translation grammar that maps the

source constructs into an abstract language representing the

meaning of the constructs.

Translation grammars are commonly written as sets of

transformation rules. For example, the following production is a

transformation rule that maps certain expressions from infix to

prefix form:

E = E+T +ET

+ E-T =0 -ET

+ T x T

(Of course, the left-most plus-sign in each line indicates alter-

nation in the BNF rule; the other plus-signs are terminal sym-

bols.)

The notation above is not general since there may be several

occurrences of the same non-terminal on the left. This results

in an ambiguity in the correspondence with the non-terminals on

the right. For this reason, a more general notation for transla-

- 11 -

LSIMPLE METRICS FOR PROGRAMMING LANGUAGES

tion grammars uses natural numbers on the right to refer to

corresponding non-terminals on the left. For example:

E E+T = +12

+ E-T -12

+ T 1

Thus, in '.12', '1' refers to the first non-terminal on the left,

namely 'E'.

These considerations lead to the following definition: A

context-free translation grammar is a quintuple,

G <T, S, N, P, g>

where T is a finite set of analysis terminal symbols, S is a fin-

ite set of synthesis terminal symbols, N is a finite set of non-

terminal symbols, and P is a finite set of transformation rules.

A transformation rule is an element of

N X V X W

where V TUN is the analysis vocabulary, and W x SUNat (where

Nat is the natural numbers) is the synthesis vocabulary.

A BNF translation rule such as

E E+T =0 +12

+ E-T =0 -12

+ T = 1

can be translated into the equivalent context-free translation

- 12-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

rules

E E T + +12

E E-T * -12

E t = 1

which are represented by the triplesI
<E, <E, +, T>, <+, 1, 2>>

: <E, <E, -, T>, <-, 1, 2>>

<E, <T>, <1>>

" We define the analysis size of a translation grammar G to be the

,' total size of the analysis parts of the rules:

A(G) =IS
<n,S,T> 4 P

Similarly, the synthesis size is the total size of the synthesis

* parts of the rules:

S(G) =T
<n,S,T> 6 P

*Finally, the total size of the grammar is defined:

,I IN + A(G) + S(G)

Note that !P! A(G) is the size of the context-free grammar

corresponding to the translation grammar G.

As with the syntactic metrics defined earlier, this

transformational metric can be computed by counting the tokens in

a translation grammar, ignoring the '= and ' ', signs.

- 13 -

: '. - , . .- . +. •
.......... •

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

Consider the simple translation grammar irn Figure 1, which maps

infix arithmetic expressions into prefix. Measuring it yields:

A(G) 19

S(G) 17

= 9

:G: 45

The author used one variant of this approach to design the exter-

nal appearance of the 8086 microprocessor for Intel Corporation.

In this case a translation grammar was formulated that mapped an

assembly-language level view of the machine into the various

primitive operations it provided. The complexities of alternate

views were then estimated by measuring the size of the associated

translation grammars. The premise underlying this approach was

that the syntactic complexity of a language was a function of the

complexity of the mapping from the language into its semantic

constituents. This mapping was, in essence, what the programmer

had to learn in order to use the machine. This technique

resulted in a number of improvements in the apparent simplicity

of the 8086.

6. Semantic Metrics

In this section we consider methods for measuring the semantic

complexity of structural subsystems of a programming language.

4 That is, we are interested in measuring the complexity of the

:14 . -

b~-l

SIMPLE METRICS FOR PROGRA[4MING LANGUAGES

semantic interrelationships without regard for the complexity of

.ne syntax with which they are expressed.

Consider a subset of the Pascal type system with primitive

K types real, integer, Boolean, and char and with the array and set

. type constructors. The allowable interrelationships among these

types can be expressed by domain equations such as these:

T D + R + array(X,T) + set(X)

D z X + I

X B + C + subrange(el(D), el(D))

where the plus-sign denotes disjoint union, upper-case letters

represent domains (T:type, D:discrete type, R:real, X:index type,

Isinteger, B=Boolean, Czchar), and words beginning with lower-

case letters denote functions on the domains. For example,

'set(S)' is the power-set of S and 'array(D,R)' is the set of all

(continuous) functions from D to R.

The number of restrictions and special cases inherent in a

subsystem of a programming language will be reflected in the com-

plexity of the domain equations required to describe that subsys-

tem. We can measure the complexity of these equations by replac-

ing them by an equivalent context-free grammar:

T z D + r + aXT + sX

D X+i

X z b + c + deDeD

This has the terminal symbols 'r', 'i', 'b', and 'c'

- 15 -

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

corresponding to the primitive types, and the terminal symbols

'a', '', '', and 'e' corresponding to the type constructors.

We have eliminated parentheses by representing function applica-

tions in prefix form (hence, we essentially have a tree grammar).

The resulting grammar generates the language of all type struc-

tures defined by the equations, i.e.,

{ r, b, c, i, Sb, Sc, abr, abb, abc, abbi, absb, ... }

We can measure the size of this grammar: 25.

A semantic grammar is a BNF grammar in which the right-hand

sides of the productions are representations of domain expres-

sons. That is, the strings between the plus-signs are either

(1) non-terminals, (representing non-primitive domains), (2)

niladic terminals (representing primitive domains), or (3) n-adic

terminals (representing constructor functions) followed by n

argument strings, each representing either a domain (primitive or

non-primitive), or a constructor function with its arguments.

Figure 2 shows a syntaoti' grammar for the Pascal type system;

Figure 3 shows the corresponding semantic grammar.

Another way to view a semantic subsystem of a language is

through a dependency graph like that in Figure 4, which

corresponds to the semantic grammar:

T D + r . aXT + sX

D x X+i

X b + c deDeD

- 16-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

In the 3raph the dependencies among the parts of the type system

become apparenr.: - type depends on the definition of another

type if there is an edge leading from the latter to the former.

Hence, recursive definitions are represented by cycles and primi-

tive domains are represented by initial nodes. The output from a

node can lead to exactly one other node, although this latter

node may be a fan-out operation (represented by a small dot),

which can have any number of outputs. The output of the entire

graph is always required to be a fan-out operation.

How can we measure the complexity of such a graph? The

nodes represent the concepts (types, in this case) that are

defined by the system and the edges represent the dependencies

among the definitions. Therefore, since one notion of the com-

plexity of a system is just the number of dependencies among its

parts, one way to measure the complexity is to count the edges in

the dependency graph. In this example it is 22.

We now relate the complexity measures for semantic grammars

and dependency graphs.

Theorem: Let G be a semantic grammar and let r be the

corresponding dependency graph. Let E(n) represent the number of

edges in r, and F(r) represent the number of fan-out nodes in f.

Then:

R(G) = E(n)

N(G) F(r)

!G : E(r) F(r)

- 17 -

• -':':.'-'.'*-'-.•-.. .," - -" ..i i -.- . " " - " " i. ;

SIMPLE METRICS FOR PROGRAM4MING LANGUAGES

where N(G) is the size of the non-terminal vocabulary of G

(which is also the number of productions in a BNF grammar).

proof: We sketch the proof informally. The method of con-

* structing the dependency graph from a grammar will make the truth

*of the theorem obvious. Repeat the following procedure for each

production in the grammar:

For each production 'n = S', add a tan-out node labeled 'n'

to the graph. Hence, the number of fan-out nodes will equal the

number of non-terminals, since in a BNF grammar the number of

productions is the same as the number of non-terminals. Thus,

N(G) = F(r).

Suppose that S (in the production 'n=S') has the form U+V;

add to the graph a plus-node whose inputs are U and V and whose

output is the fan-out node for n. The plus-sign in the produc-

tion corresponds to the edge from the plus-node to the fan-out

node. Continue this process if either U or V contains plus-signs

by adding new plus-nodes whose outputs lead to previously added

plus-nodes. Hence, the number of edges leading from plus-nodes

*is the number of plus-signs in the grammar.

Next consider a terminal string S that does not contain a

plus-sign. If S is a single niladic terminal symbol t, then add

an initial node to the graph with an edge leading out from it.

7 Hence, the number of edges leading from initial nodes is the

*: number of occurrences of niladic terminal symbols.

- 18
- 8

d'b. - . ..-
.- -

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

If S is a single non-terminal symbol n, then construct an

edge leading from the fan-out node labeled n. Hence, the number

- of edges leading from fan-out nodes is the number of occurrences

", of non-terminal symbols on the right-hand side of rules.

Finally, suppose S is a string

fSIS 2."

where f is a non-niladic terminal symbol representing an operator

and the Sl are strings representing the arguments of that opera-

.ii
-tion. Add a node representing an operation f and recursively

* process its arguments. Hence, the number of edges leaving opera-

tor nodes is the number of non-niladic terminal symbols in the

*grammar.

Since every edge must leave either a fan-out node, an ii-

tial node, or an operator node, the total number of edges is the

total of the number of occurrences of non-terminals, niladic ter-

minals, and non-niladic terminals. Hence, the number of edges is

just the total number of symbols that occur on the right of the

BNF rules, so R(G) : E(r'). QED.

Both the grammar-oriented and graph-oriented approaches have

been applied to measuring the semantic complexity of the data,

control, and name structures of several programming languages.

These studies are reported in C83 and (11].

-19-

SIMPLE METRICS FOR PROGRAMMIG LANGUAGES

7. Validation of Metrics

There remains the important question, How are these measures

validated? To put it another way, we have an informal under-

standing of complexity; how can we make it formal? Firstly, our

formal measure must agree with our informal judgements in most

cases. For instance, the measure should show that the data

structures of Algol-60 are simpler than those of Pascal. This

aspect of the validation could be backed up with formal psycho-

logical tests, but this does not seem necessary. Psychological

validation has not been required for concepts such as "comput-

able": the formal definition seems to correspond to the infor-

mal, although no formal proof of the correspondence is possible.

Secondly, we can determine if the formal measure satisfies

the same properties as the informal. For instance, the measure

should be additive in those aspects that the informal idea is

additive. An example of this comes from information theory: we

expect the information capacity of two pages to be approximately

* the sum of the information capacities of the separate pages. It

is easy to see that the formal definition of informatica capacity

satisfies this property.

Finally, the formal measure should be productive; that is,

it should lead to a rich theory with good predictive abilities

and explanatory power. Information theory is a perfect example.

Of course, it is difficult to evaluate a measure on this basis

until a substantial amount of experience in its use has accumu-

- 20 -

........ . .. -........ . .

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

lated.

8. Conclusions

In this paper we have defined three simple metrics that can be

applied to programming language design. The first is a syntactic

metric that is determined by counting the tokens in a context-

free grammar for a language or a part of a language. This allows

a language designer to estimate the total syntactic complexity of

a language and to measure the relative proportion of a language's

syntax devoted to different purposes.

The second metric is a transformational metric that is

*! determined by the number of tokens in a translation grammar that

maps the source language into an abstract language reflecting the

basic semantic notions of the language. This metric allows the

language designer to evaluate the complexity of the relationship

between a language's syntax and semantics. Like the syntactic

metric, it can be applied to the entire language or to particular

parts.

Next we defined a semantic metric that is determined by the

number of tokens in a context-free grammar that describes the

dependencies among the semantic primitives. This metric was

shown to be equivalent to a metric based on the number of nodes

and edges in the corresponding semantic dependency graph. The

semantic metric is most usefully applied to well-defined semantic

subsystems of a programming language, such as its control struc-

- 21 -

SIMPLE METRICS FOH PROGRAMMING LANGUAGES

ture, name structure, and Jata type systems. This permits the

comparison of the complexity of tne Jependencies in corresponding

systems in different languages.

Finally we discussed the validation of metrics like those

defined in this paper. We argued that these metrics must be

validated by their integration with existing theories and by

their usefulness, rather than by psychological demonstrations of

their relationship with perceived qualities. As it has in the

natural sciences, the objective approach is more likely to pro-

duce testable, widely applicable theories than is the subjective

approach.

9. Acknowledgements

The work reported herein was supported by the Office of Naval

Research under contract number N00014-82-WR-20162.

10. References

(1] A.R. Feuer and N.H. Gehani, A Comparison of the Programming

Languages C and PASCAL, Comp. Surveys 14, 1, March 1982, pp

73-92.

[2] J.E. Sammet, Problems in, and a Pragmatic Approach to Pro-

gramming Language Measurement, AFIPS Fall Joint Computer

Conf., 1971, pp 243-251.

C31 J.D. Gannon and J.J. Horning, Language Design for Program-

- 22 -

SIMPLE METRICS FOd PROGRAAMING LANGUAGES

ming Reliability, IEEE Trans. Software Eng. SE-I, 2, June

1975, pp 179-191.

[14) J.D. Gannon, An Experimental Evaluation of Data Type Con-

[.;" ventions, CACM 20, 8, Aug. 1977, pp 584-595.

[5] B. Schneiderman, SOFTWARE PSYCHOLOGY: Human Factors in

Computer and Information Systems, Winthrop Publishers,

Inc., Cambridge, Mass. (1980).

(6] M.J.C. Gordon, The Denotational Description of Programming

Languages, Springer-Verlag, New York (1979).

(7] R. Milne and C. Strachey, A Theory of Programming Language

Semantics, Chapman and Hall, London (1975).

(8] B.J. MacLennan, The Structural Analysis of Programming

Languages, Naval Postgraduate School Computer Science

Department Technical Report NPS52-81-009, September 1981.

[9] S. Ginsburg, and N. Lynch, Size Complexity in Context-Free

Grammar Forms, JACM 23, 4, October 1976, pp 582-598.

[10] J. Gruska, On the Size of Context-Free Grammars, Kybernet-

ica 8, 1972, pp 213-218.

[11] B.J. MacLennan, Measuring Control Structure Complexity

Through Execution Sequence Grammars, Naval Postgraduate

School Computer Science Department Technical Report NPS52-

81-015, November 1981.

- 23 -

: ' " "" "i : . '" . .: , . - -.: .. i
.- .""

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

TABLE 1. Comparison of Sizes of Entire Languages

Language Total Grammar Size

BASIC 396

Pascal 541

Algol-60 603

Ad a 1614

TABLE 2. Sizes of Subsystems of Algol-60

Subsystem Size (tokens)

Lexics 69

Expressions 210

Statements 177

Declarations 147

Total 60.4

TABLE 3. SubsysteM Proportions of Algol-60, Pascal, and Ada

Subsystem Algol-60 C) Pascal (M Ada MS

Lexics 11 1J4 8

Expre3sions 35 23 16

Statements 29 22 22

Declarations 24 41 54

Total 99 100 100

-24-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

E :E +T s~ su-11 2

+e E -T -:0 d if 1 2

+ 1

T T F ~prd 12

+ T/F quo 12

+ 1

F (E)1

+ 1

Figure 1. Translation Grammar for Arithmetic Expressions

-25-

SIMPLE METRICS FOR PROGRAMMING LANGUAGES

type type id

+ id list

+ constant .. constant

+ T type id

+ PACKED structured-type

+ structured type

id list = id + id , idlist

structured-type ARRAY [type-list] OF type

+ RECORD field list END

+ RECORD field list variant part END

+ FILE OF type

+ SET OF type

field list = I + id list : type ; field list

variantpart = CASE optid typeid OF variant list

opt id zid: i +
m4

variant list = variant + variant ; variant list

variant case labels : (field list)

case labels constant + constant , case labels

Figure 2. Syntactic Grammar of Pascal Type System

- 26 -

.,.... -.. - . .. --

SIMPLE METRICS FOH PROGRAMMING LANGUAGES

type REAL

+ discrete type

.+ PTR type

+ PACKED structured type

+ structured type

discretetype = INTEGER + index-type

index type = BOOLEAN + CHAR + POWERSET id

+ SUBRNG const const

const= SELECT discretetype

structuredtype =ARRAY index-type type

+ SET index-type

+ FILE type

+ RECORD field list

+ RECORD field list variantpart

field list = I + CONS PAIR id type field list

variant-part : CASE opt id index-type variant list

optid :id + I

variant list variant + CONS variant variant list

variant PAIR constant field list

Figure 3. Semantic Grammar for Pascal Type System

- 27 -

SIMPLE METRICS FOR PROGRA1MMING LANGUAGES

Figue 4 Diaramot Sbse ot ascl Tye Sste

D 28

INITIAL DISTRIBUTION LIST

Defense Techical Information Center 2
*" Cameron Station

Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code O12A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Dr. Bob Grafton
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217

-29-

